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Abstract

In this paper, a parallel structure of fuzzy PID control systems is proposed. It is associated with a new tuning method which, based
on gain margin and phase margin speci"cations, determines the parameters of the fuzzy PID controller. In comparison with
conventional PID controllers, the proposed fuzzy PID controller shows higher control gains when system states are away from
equilibrium and, at the same time, retains a lower pro"le of control signals. Consequently, better control performance is achieved.
With the proposed formula, the weighting factors of a fuzzy logic controller can be systematically selected according to the plant
under control. By virtue of using the simplest structure of fuzzy logic control, the stability of the nonlinear control system can be
analyzed and a su$cient BIBO stability condition is given. The superior performance of the proposed controller is demonstrated
through an experimental example. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, fuzzy logic controllers (FLC), espe-
cially fuzzy proportional-integral-derivative (PID) con-
trollers have been widely used for industrial processes
owing to their heuristic nature associated with simplicity
and e!ectiveness for both linear and nonlinear systems.
In fact, for single-input single-output systems, fuzzy logic
controllers are essentially the fuzzy PD type, fuzzy PI
type or fuzzy PID type associated with nonlinear gains.
Because of the nonlinear property of control gains, fuzzy
PID controllers possess the potential to improve and
achieve better system performance over the conventional
PID controller if the nonlinearity can be suitably utilized.
On the other hand, due to the existence of nonlinearity, it
is usually di$cult to conduct theoretical analyses to
explain why fuzzy PID can achieve better performance.
Consequently, it is important, from both the theoretical
and practical points of view, to explore the essential
nonlinear control properties of fuzzy PID and "nd out

appropriate design methods which will assist the con-
trol engineers to con"dently utilize the nonlinearity of
the fuzzy PID controllers to improve the closed-loop
performance.

To ful"ll the above target, we need to answer the
following three fundamental questions: (1) what is the
suitable structure for fuzzy PID controllers? (2) how to
systematically tune the fuzzy PID controller parameters?
and (3) how to analyze and evaluate the designed fuzzy
PID controllers?

To answer the "rst question, let us investigate the
existing fuzzy PID controllers. There are many design
factors in a fuzzy logic controller determining its struc-
ture, such as membership functions, input space partition
by fuzzy rules, various types of fuzzy inference mecha-
nisms, defuzzi"cation schemes, etc. They may appear
either highly nonlinear or approximately linear. Never-
theless, to perform proportional, integral and derivative
control modes, the structure of a fuzzy logic controller
has to be in some way analogous to a normal PID
controller. Although various types of fuzzy PID (includ-
ing PI and PD) controllers have been proposed (Zhao,
Tomizuka & Isaka, 1993; Ying, 1993; Qin & Borders,
1994; Malki, Li & Chen, 1994; Xu, Liu & Hang, 1998; Li,
1998), they can be classi"ed into two major categories
according to the way of construction.
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Nomenclature

y plant output
r reference input
r
0

set-point change
e error
*e change of error
w
e
, w

e1
, w

e2
scaling coe$cients of errors

w*e , w*e1 , w*e2 scaling coe$cients of change of
errors

w
u
, w*u scaling coe$cients of FLC outputs

*(F)
u1

fuzzy PI control
u(F)
2

fuzzy PD control
u(F)
PID

fuzzy PID control
*u(F)

PID
increment of fuzzy PID control

k,k
P
,k

N
membership functions

P,P
e
,P*e positive fuzzy labels

N,N
e
,N*e negative fuzzy labels

K(F)
#

fuzzy proportional gain
¹(F)

*
fuzzy integral constant

¹(F)
$

fuzzy derivative constant
K

#
proportional gain

¹
*

integral constant
¹

$
derivative constant

*t sampling period
s Laplace operator
z delay operator
G

#
(s) PID controller

G(s) plant
q
1
,q
2

time delay constants
¸ dead time
A

.
gain margin (dB)

'
.

phase margin
u

1
phase crossover frequency

A(F)
.

fuzzy gain margin
a
0

equivalent gain/phase contour
K(F)

#a0 FLC gain on a
0

contour
A(F)

.a0 fuzzy gain margin on a
0

contour
q(t) tank 1 inlet
H

2
(t) water level of tank 2

One category of fuzzy PID controllers is composed of
the conventional PID control system in conjunction with
a set of fuzzy rules (knowledge base) and a fuzzy reason-
ing mechanism. The PID gains are tuned on-line in terms
of the knowledge base and fuzzy inference, and then the
PID controller generates the control signal. One such
design was given by (Zhao et al., 1993). By virtue of the
gain scheduling property, this type of fuzzy PID control-
lers can adapt themselves to varying environments. The
main di$culty in using this category of fuzzy PID con-
trollers is that the analysis task is relatively tough, as it is
hard to acquire the equivalent nonlinearity of the fuzzy
knowledge base. Besides, associating three PID gains
adaptively with the system responses requires ad hoc
expertise which may not be so straightforward for a user
or designer to extract.

Another category of fuzzy PID controllers is a typical
fuzzy logic controller constructed as a set of heuristic
control rules, hence the control signal is directly deduced
from the knowledge base and the fuzzy inference. These
heuristic control rules can be very simple and primitive,
hence easy to derive. They are referred to as fuzzy
PID controllers because, from the viewpoint of in-
put}output relationship, their structure is analogous
to that of the conventional PID controller. Once the
structure is "xed, the nonlinear property of the fuzzy
PID controller is uniquely determined. When a large
number of fuzzy rules are involved in such a fuzzy logic
controller and unevenly distributed in the fuzzy input
space, it will be again di$cult to do any analysis. On
the other hand, if a relatively simple fuzzy rule base is
used, it is possible to capture the essential nonlinear

model of the fuzzy PID controller. Thus numerous
model-based controller analysis tools and controller
parameter setting methods can be used. A considerable
amount of work has been done in this particular area of
FLC structure analysis.

In this paper we propose a new type of the fuzzy PID
controller of the second category. It has the simplest
structure: only two fuzzy labels are used for each fuzzy
input variable and three fuzzy labels for the fuzzy control
output variable. The considerations behind our selection
are as follows. First, from the practical point of view, it
seems that the heuristic knowledge of the second cat-
egory is more analogous to that of human operator or
expert, therefore it is easier to be acquired. Second, owing
to the similarity of the input}output relationship between
the fuzzy and conventional PID controllers, it is possible
for us to borrow conventional PID tuning methods to
decide the fuzzy PID controller parameters. Third, with
the simplest structure of the dynamics of the fuzzy PID, it
is convenient for us to conduct further theoretical analy-
sis and evaluation.

It should be pointed out that, for fuzzy PID control-
lers, normally a 3-D rule base is required. This is di$cult
to obtain since 3-D information is usually beyond the
sensing capability of a human expert. To obtain all of
proportional, integral and derivative control action, it is
intuitive and convenient to combine PI and PD type
fuzzy logic controllers together to form a fuzzy PID
controller. Therefore, in the proposed fuzzy control sys-
tem there are only four control rules for the fuzzy PI and
fuzzy PD control channels, respectively, and the two
channels are combined in parallel.

674 J.-X. Xu et al. / Automatica 36 (2000) 673}684



After determining the structure, we are ready to answer
the second and third questions. There are two ways of
determining fuzzy logic controller parameters, depending
on how much is known about the process under control.
Without knowing the process dynamics or its approxi-
mation, the FLC parameters can only be tuned through
trial and error. On the other hand, it is well known that
for most industrial control problems, the e!ective tuning
of conventional PID controllers is based on estimating
and approximating the process dynamics, whether linear
or nonlinear, by a simple linear "rst or second order
system with dead time. There exist many tuning or auto-
tuning algorithms such as Ziegler}Nichols tuning for-
mula, internal model control tuning method (As stroK m
& HaK gglund, 1995), optimization based tuning (As stroK m,
Panagopoulos & HaK gglund, 1998), etc. Because a fuzzy
controller of the second category is essentially a PD type,
PI or PID-type controller with nonlinear gains, it is
possible to borrow the standard estimation method, for
instance the relay test, and tuning methods of a conven-
tional PID controller to design the fuzzy PID controller.
Gain margin and phase margin are important measures
of the closed-loop system characteristics and they o!er
a convenient means for designing control systems. The
auto-tuning method for PI/PID controllers to satisfy
a pair of speci"ed gain margin and phase margin has
been proven to be e!ective (Ho, Hang & Cao, 1994). In
this paper, we introduce a tuning method, which is
similarly based on gain margin and phase margin, to
determine the parameters of the proposed fuzzy PID
controller. The auto-tuning formula is applied here to
decide the fuzzy PID parameters (the weighting coe$-
cients for error, the change of error and controller out-
put) with respect to a selected equivalent gain/phase
margin contour on which both fuzzy and conventional
PID controllers possess the same gain and phase mar-
gins. This ensures the required gain and phase margins,
which give the local stability, of the fuzzy PID controller
on the selected contour. The "ne-tuning of the error
coe$cient, which does not a!ect the given gain and phase
margins, is based on heuristic knowledge.

As for the analysis and evaluation of the fuzzy PID
controllers, we will focus on an important issue: the
stability problem. Although fuzzy logic controllers have
been adopted in many engineering applications, their
performance is not guaranteed since there is a lack of
stability analysis. Note that the concept of local stability
based on the gain and phase margins is essentially
from the linear control systems. Therefore, more general
stability analysis methods which can incorporate the
nonlinear nature of the fuzzy PID controller are prefer-
red. In this paper, the well-known small-gain theorem is
employed to evaluate the bounded-input/bounded-out-
put stability condition of the proposed fuzzy PID control
system. Through analysis we will show another impor-
tant property of the new fuzzy PID controller: it pos-

sesses higher control gains but yields less control e!orts
than the conventional PID controllers.

This paper is organized as follows. The fuzzy PID
controller constructed by the parallel combination of
fuzzy PI and fuzzy PD controllers and its tuning formula
is "rst presented. The stability condition and the prop-
erty of the proposed fuzzy PID controller are then
studied. Experiments are carried out which demonstrate
better control performance of the proposed fuzzy PID
controller, thereby showing the validity of the proposed
control method.

2. Design of fuzzy PID control system

2.1. Fuzzy PID controller with parallel structure

Usually, a fuzzy controller is either a PD or a PI type
depending on the output of fuzzy control rules. A fuzzy
PID controller may be constructed by introducing the
third information besides error and change in error,
which is either rate of change in error or sum of error,
with a 3-D rule base. Such a fuzzy PID controller with
a 3-D rule base is di$cult to construct because: (1) for
the case of using rate of change in error, a human expert
can hardly sense the third dimension of information, for
instance, the acceleration besides position and velocity in
a motion control system, and thus it is di$cult to obtain
the control rules; (2) for the case of using sum of error,
it is di$cult to quantitate its linguistic value since a
di!erent plant needs di!erent integral gain and steady-
state value of sum of error; (3) a 3-D rule base can be
very complex when the number of quantizations of each
dimension increases; in this situation, the control
rule number increases cubically with the number of
quantizations.

In this paper, we propose a parallel combination of
a fuzzy PI controller and a fuzzy PD controller to achieve
a fuzzy PID controller. The overall structure is shown in
Fig. 1.

Simplest structures are used in each FLC. There are
only two fuzzy labels (Positive and Negative) used for the
fuzzy input variables and three fuzzy labels (Positive,
Zero and Negative) for the fuzzy output variable. There
are two main reasons which motivate us to choose this
type of FLC: (1) theoretical analysis is possible owing to
its simplicity and (2) the nonlinearity of the simplest fuzzy
controller is the strongest (Buckley & Ying, 1989). There-
fore, we can expect better control performance from this
simplest structure controller as long as we can correctly
use its nonlinear property.

First of all, the error and the change of error are
de"ned as

e(k)"r(k)!y(k),

*e(k)"e(k)!e(k!1). (1)
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Fig. 1. The overall structure of fuzzy PID controller.

Fig. 2. Membership functions of e & *e.

The inputs of the fuzzy controller are normalized error
(w

eHe) and normalized change of error (w*eH*e) where
w
eH and w*eH are weighting factors. The notation

*(*"M1, 2N) denotes di!erent types of FLCs. The mem-
bership functions k(v) of fuzzi"ed inputs are de"ned in
Fig. 2.

According to this kind of triangular-shape member-
ship functions, there are four fuzzy labels P

e
,P*e , Ne

and
N*e for the two fuzzy input variables and the correspond-
ing membership functions are described as

k
PeH

"G
0, w

eH ) e(!1,

1
2
#1

2
w

eH ) e, !14w
eH ) e(1,

1, w
eH ) e51,

(2)

k
NeH

"G
1, w

eH ) e(!1,

1
2
!1

2
w

eH ) e, !14w
eH ) e(1,

0, w
eH ) e51,

(3)

k
P*eH

"G
0, w*eH )*e(!1,

1
2
#1

2
w*eH )*e, !14w*eH )*e(1,

1, w*eH )*e41,

(4)

k
N*eH

"G
1, w*eH )*e(!1,

1
2
!1

2
w*eH )*e, !14w*eH )*e(1,

0, w*eH )*e51.

(5)

Consequently, there are only four simple fuzzy control
rules used in each FLC (see Table 1). The fuzzy labels of
control outputs are singletons de"ned as P"1, Z"0
and N"!1. By using Larsen's product inference
method with Zadeh fuzzy logic AND and Lukasiewicz
fuzzy logic OR, using the center-of-gravity defuzzi"ca-
tion method, and for simplicity choosing w

e1
"w

e2
"w

e
and w*e1"w*e2"w*e , the control output of each FLC
can be obtained, in the universe of discourse (Ying, 1993),
as

*u(F)
1

"

w*u1
4!2max(w

e1
DeD,w*e1 D*eD)

(w
e1

e#w*e1*e)

"

w*u
4!2a

(w
e
e#w*e*e), (6)

u(F)
2
"

w
u2

4!2 max(w
e2

DeD,w*e2 D*eD)
(w

e2
e#w*e2*e)

"

w
u

4!2a
(w

e
e#w*e*e), (7)

where

a"max(w
e1

DeD,w*e1 D*eD)"max(w
e2

DeD,w*e2 D*eD)

"max(w
e
DeD,w*e D*eD).

The overall fuzzy control output will be

u(F)
PID

"

k
+
0

*u(F)
1
#u(F)

2

"

k
+
0

w*uw*e
4!2a A*e#

*t

w*e/we
*t

eB
#

w
u
w
e

4!2aAe#
w*e*t

w
e

*e

*tB. (8)

If we choose

K(F)
#
"

w*uw*e
4!2a

,

¹(F)
*
"

w*e
w
e

*t, (9)

K(F)
#

¹(F)
$

¹(F)
*

"

w
u
w

e
4!2a

,

then the fuzzy control output in (8) can be rewritten as

u(F)
PID

"

k
+
0

K(F)
# A*e#

*t

¹(F)
*

eB
#K(F)

#

¹(F)
$

¹(F)
*
Ae#¹(F)

*

*e

*tB. (10)

Now assume that the time constants of the plant are
su$ciently large compared with the sampling interval,
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Table 1
Fuzzy control rules (FLC

1
and FLC

2
). N: negative; P: positive; Z: zero

Rule 1 If error is N and change of error is N, change in control action is N
PI Part Rule 2 If error is N and change of error is P, change in control action is Z
FLC

1
Rule 3 If error is P and change of error is N, change in control action is Z
Rule 4 If error is P and change of error is P, change in control action is P

Rule 1 If error is N and change of error is N, control action is N
PD Part Rule 2 If error is N and change of error is P, control action is Z
FLC

2
Rule 3 If error is P and change of error is N, control action is Z
Rule 4 If error is P and change of error is P, control action is P

which is common and reasonable in process control, such
that

e5 +
*e

*t
,

then the overall control output can be approximated as

u(F)
PID

+P
k >*t

0

K(F)
# Ade#

e

¹(F)
*

dtB
#K(F)

#

¹(F)
$

¹(F)
*
Ae#¹(F)

*

de

dtB
"P

k >*t

0

K(F)
#

e5 dt#P
k >*t

0

K(F)
#

¹(F)
*

edt

#

K(F)
#
¹(F)

$
¹(F)

*

(e#¹(F)
*

e5 ). (11)

Note that the linear PID controller in series form is

G
#
(s)"

K
#

¹
*
s
(1#s¹

*
)(1#s¹

$
)

or

u"P
t

0

K
#
e5 dt#P

t

0

K
#

¹
*

edt#
K

#
¹

$
¹

*

(e#¹
*
e5 ),

in time domain. Comparing (11) with the above formula
we can conclude that the fuzzy PID controller (8) is
a nonlinear PID controller with variable proportional
gain.

Remark 1. By adopting the simplest FLC in Fig. 1, its
nonlinear structure and the inherent relationships be-
tween its components and their functioning can be made
transparent to the designer. With the formulas (6), (7)
and (11), the FLC is in essence a nonlinear PID-type
controller because its structure is analogous to that of

a common linear PID controller. Moreover, the equiva-
lent proportional control gain K(F)

#
, integral time ¹(F)

*
and

derivative time ¹(F)
$

are composed of FLC parameters
w
e
, w*e , wu

, and w*u as shown in Eq. (9). This greatly
facilitates the property analysis and setting of control
parameters, as will be shown subsequently.

Remark 2. It is worthwhile pointing out that the fuzzy
PID control system has six control parameters free for
design, whereas the conventional PID only has three. In
this paper we choose w

e1
"w

e2
"w

e
and w*e1"

w*e2"w*e to reduce the undetermined fuzzy PID con-
trol parameters. The purpose is to facilitate the applica-
tion of conventional PID tuning algorithms to the fuzzy
PID controller. It is clear that if all the control para-
meters are used, we actually have more degrees of free-
dom in designing fuzzy PID to achieve multiple control
targets such as robustness or adaptation. However, in
this paper we will not pursue any further discussions in
this direction.

Remark 3. Note here that the series form of conventional
PID controller is used in the comparison. This structure
is also implemented in many commercial controllers and
can be easily transformed to the parallel structure (As s-
troK m & HaK gglund, 1995). Although this kind of PID
controllers cannot introduce complex zeros, it is su$-
cient for the purpose of process control.

2.2. Tuning of the fuzzy PID controller

Suppose that a process can be modeled by a second-
order plus dead-time structure which has the transfer
function of

G(s)"
K

p
e~sL

(1#sq
1
)(1#sq

2
)
, q

1
5q

2
(12)

and a pair of gain margin and phase margin (A
.
,'

.
) is

given as the closed-loop performance speci"cation. The
tuning formulae of a conventional PID controller can be
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obtained as (Ho et al., 1994)

u
1
"

A
.
'

.
#1

2
pA

.
(A

.
!1)

(A2
.
!1)¸

,

K
#
"

u
1
q
1

A
.
K

1

, (13)

¹
*
"

1

2u
1
!4u2

1
¸/p#1/q

1

,

¹
$
"q

2
,

where u
1

is the resultant phase crossover frequency.

Remark 4. In many practical control problems, ranging
from the level control in chemical industry to the servo
tracking control in disk drive industry, it is su$cient and
sometimes also necessary to use a simple model such as
(12) to design a controller. It is su$cient because
a PI/PID controller based on the linearized model can
work well even though the original process has high
nonlinearities and uncertainties (As stroK m & HaK gglund,
1995; Seborg, Edgar & Mellichamp, 1989). It is also
necessary because other advanced control methods may
either be too complicated to be implemented, or require
too many measurements which are not available. For
instance, consider the level control of a coupled-tank
system, the complete model takes a nonlinear cascaded
form. Since the liquid level of the 1st tank is usually not
available, many advanced control methods such as
backstepping-approach-based robust adaptive control
methods, which are dedicated to this kind of nonlinear
systems, are not applicable. However PID, despite its
simplicity, gives satisfactory control performance.

Comparing (13) with (9), let

K(F)
#
"K

#
, ¹(F)

*
"¹

*
, ¹(F)

$
"¹

$
.

It is easy to derive

w*e"
w
e

(2u
1
!4u2

1
¸/p#1/q

1
)*t

w*u"
u

1
q
1
(2u

1
!4u2

1
¸/p#1/q

1
)

A
.
K

1
w
e

(4!2a)*t (14)

w
u
"

u
1
q
1
q
2
(2u

1
!4u2

1
¸/p#1/q

1
)

A
.
K

1
w
e

(4!2a).

Thus, we have three independent equations with four
undetermined control parameters. Usually, the system
output has a working range which is highly related to the
changing range of set point. If the working range is large,
w
e

should be relatively small and vice versa. Such a suit-
able w

e
ensures the normalized error "tted into the inter-

val of [!1,1]. This is reasonable because the
quantization values of the fuzzy linguistic variables e or
*e are dependent on what range the system is working in.

Thus the normalizing factor of error should be propor-
tional to the reciprocal of the working range, or speci"-
cally in our study, the set-point changing range, i.e.

w
e
"

s
r
0

. (15)

Based on extensive numerical studies, we choose s"0.2
to make possible a compromise among rise time, over-
shoot and settling time, where r

0
is the set-point change.

For a fuzzy PI controller, this w
e

can be used to approx-
imately minimize the ITAE to set-point response (Xu,
Liu & Hang, 1996). With Eqs. (14) and (15), the coe$-
cients of the fuzzy PID controller (8) can be uniquely
determined with respect to any plant in the form of (12).

In the tuning algorithm, a can be interpreted as an
equivalent gain/phase contour in the sense of the gain
and phase margins. When determining the fuzzy PID
parameters in terms of gain and phase margins, we need
to assign a "xed value to the quantity a. Let a"a

0
where

a
0
3[0,1]. a

0
actually speci"es a particular contour on

the normalized e/*e plane such that, on this contour the
gain and phase margins (which are measures of the local
stability of the closed-loop system) satisfy the speci"ca-
tions (Fig. 3).

According to the tuning formulae (14) and (15), when
a particular a

0
is selected, the weighting factors

w
e
, w*ew*u and w

u
will be "xed. This we have

¹(F)
*

(e,*e)"
w*e*t

w
e

,

¹(F)
$

(e,*e)"
w
u

w*u
*t,

K(F)
#

(e,*e)"
w*uw*e
4!2a

"

4!2a
0

4!2max(w
e
DeD,w*e D*eD)

1

4!2a
0

w*uw*e

"c
1

4!2a
0

w*uw*e

"cK(F)
#a0 , (16)

where K
#a0 is the gain of FLC when the system is at its

a
0

contour. Clearly, the fuzzy PID controller has the
property that its ¹(F)

*
and ¹(F)

$
are "xed and K(F)

#
is

variable in terms of di!erent e and *e. Because we will
have

c(e,*e)"
4!2a

0
4!2max(w

e
DeD,w*e D*eD)

, (17)

which means c(1, c"1 or c'1 when normalized sys-
tem states (w

e
e and w*e*e) are inside, on, or outside the

a
0

contour, respectively. From the second equation of
(13), replacing K

#
by K(F)

#
, we obtain the closed-loop gain
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Fig. 3. Equivalent gain/phase margin contours of di!erent a
0
.

margin for the fuzzy PID as

A(F)
.
"

A
.a0
c

, (18)

where

A
.a0 "

u
1
q
1

K(F)
#a0 K1

.

Eq. (18) shows that the gain margin is always recipro-
cal to c. Therefore, from (17) we can conclude that no
matter what a

0
is used, the further away from outside the

equivalent gain/phase margin contour, the larger is the
c and consequently, the smaller is the gain margin. Sim-
ilarly, the closer to the steady state, the smaller is the
c and then the larger is the gain margin. In short,
A(F)

.
increases when DeD or D*eD decreases, which means that

the loop gain K(F)
#

K
1

decreases and the system &safety
factor' increases. Note that this is a desirable property, as
this ensures that the system is less sensitive to measure-
ment noise near the steady state and is quick in response
when o! the steady state.

The property of a
0

can be used to allocate the equiva-
lent gain/phase margin contour. For example, if a

0
"0

the system has the same local stability property as the
one controlled by the conventional PID controller
around the steady state, and the equivalent gain/phase
margin contour shrinks to a single point located at the
center of the e/*e plane. In this situation, the controller
gain will reach its minimum only when the system is at its
steady state. In this study, we set a

0
"0 to ensure that

the fuzzy PID controller has the same local stability as
the conventional PID controller around the steady state
and higher gain property of the steady state.

3. Stability and performance analysis

In the previous section, the properties of gain schedul-
ing and local stability have been discussed in the sense of

gain and phase margins. Since the concepts of gain and
phase margins are essential for linear control systems, the
above discussions are qualitative and approximate ones.
In order to explore the quantitative relationship between
the fuzzy and conventional PID controllers and evaluate
the global stability, we need more strict and more general
analysis methods which can be applied to both nonlinear
processes and nonlinear controllers. The small-gain the-
orem is an appropriate tool for this purpose. It should be
noted that the new fuzzy PID is tuned based on a simple
model of second order with dead time. This implies that
less information is available in the stage of controller
design. Hence, the stability analysis is imperative, espe-
cially when the controlled process is of general nonlinear
uncertain classes such as BIBO types.

3.1. BIBO stability condition of the fuzzy PID control
system

In this subsection, we will analyze the bounded-in-
put/bounded-output (BIBO) stability of the fuzzy PID
control system. By using the small-gain theorem, we will
"nd the generalized su$cient BIBO stability condition of
the proposed fuzzy PID control system. Consider a gen-
eral case where the process under control, which is de-
noted by g(v), is nonlinear and the reference input is r(k).
By using the control law (10), we have

u(F)
PID

(k)"*u(F)
1

(k)#u(F)
2

(k)#
k~1
+
i/0

*u(F)
1

(i)

"*u(F)
PID

(k)#u(F)
PID

(k!1), (19)

where

*u(F)
PID

(k)"*u(F)
1

(k)#u(F)
2

(k)!u(F)
2

(k!1). (20)

By denoting

*u(F)
PID

(k)"f (e(k)),

y(k)"g(*u(F)
PID

(k)), (21)

it is easy to obtain an equivalent closed-loop control
system as shown in Fig. 4.

Theorem. A suzcient condition for the nonlinear fuzzy PID
control system to be BIBO stable is that the given nonlinear
process has a bounded norm (gain) as DDgDD(R and the
parameters of the fuzzy PID controller, w

e
,w*e ,wu

and
w*u , (or K(F)

#
(k),¹(F)

*
and ¹(F)

$
in (16)), satisfy

K(F)
#

(k)A1#
¹(F)

$
¹(F)

*

#

*t

¹(F)
*

#

¹(F)
$

*t B ) DDgDD(1, (22)

where DDgDD is the operator norm of the given g(v), or the
gain of the given nonlinear system, usually de,ned as
(Desoer & <idyasagar, 1975):

DDgDD" sup
v1Ev2,kz0

Dg(v
1
(k))!g(v

2
(k))D

Dv
1
(k)!v

2
(k)D

. (23)
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Fig. 4. An equivalent closed-loop fuzzy PID control system.

Fig. 5. Di!erent regions of fuzzy PID controller's inputs combinations.
Proof. The fuzzy PID controller can be considered as
a self-tuning adaptive nonlinear PID controller since the
gains of this kind of controllers vary in terms of the
combination of the inputs (e,*e) of the fuzzy controller.
The combination of (e,*e) can be divided into nine re-
gions as shown in Fig. 5. When the inputs of (e(k),*e(k))
are in region I, the control law is given by (20), therefore
from (6), (7) and (9)

*u(F)
PID

(k)

"*u(F)
1

(k)#u(F)
2

(k)!u(F)
2

(k!1)

"K(F)
#

(k)C*e#
*t

¹(F)
*

e(k)D
#K(F)

#
(k)

¹(F)
$

¹(F)
*
Ce(k)#

¹(F)
*

*t
*e(k)D

!K(F)
#

(k!1)
¹(F)

$
¹(F)

*
Ce(k!1)#

¹(F)
*

*t
*e(k!1)D

"K(F)
#

(k)A1#
¹(F)

$
¹(F)

*

#

*t

¹(F)
*

#

¹(F)
$

*t Be(k)

!K(F)
#

(k)A1#
¹(F)

$
*t Be(k!1)

!K(F)
#

(k!1)A
¹(F)

$
¹(F)

*

#

¹(F)
$

*t Be(k!1)

#K(F)
#

(k!1)
¹(F)

$
*t

e(k!2) (24)

and thus

DD f (e(k))DD4K(F)
#

(k)K1#
¹(F)

$
¹(F)

*

#

*t

¹(F)
*

#

¹(F)
$

*t K
) De(k)D#l

1
e
.!9

, (25)

where

l
1
"max(K(F)

#
)A1#

¹(F)
$

¹(F)
*

#3
¹(F)

$
*t B

42K(F)
#a0A1#

¹(F)
$

¹(F)
*

#3
¹(F)

$
*t B

e
.!9

"max(De(0)D, De(1)D,2, De(k!1)D). (26)

On the other hand,

DDg(u(F)
PID

(k))DD4DDgDD ) Du(F)
PID

(k)D. (27)

Applying the small-gain theorem, we can obtain the
su$cient condition for the BIBO stability given by the
theorem

K(F)
# K1#

¹(F)
$

¹(F)
*

#

*t

¹(F)
*

#

¹(F)
$

*t K ) DDgDD(1.

Similarly, when the system state (e(k),*e(k)) is in the
regions of II and II@, in which the term w*e*e is outside
the interval of [!1,1] and becomes a constant due to
the saturation. Hence we can obtain the su$cient BIBO
stability condition as

K(F)
# K

¹(F)
$

¹(F)
*

#

*t

¹(F)
*
K ) DDgDD(1.

When (e(k),*e(k)) is in the regions of III and III@, in which
w
e
e is outside the interval of [!1,1], the su$cient BIBO

stability condition is found to be

K(F)
# K1#

¹(F)
$

*t K ) DDgDD(1.

Finally, when (e(k),*e(k)) is in the regions of IV, IV@,
V and V@, since the control e!ort is constant, the su$cient
BIBO stability condition is that DDgDD is bounded.

By combining all the above conditions together, and
noting that K(F)

#
'0, ¹(F)

*
'0, ¹(F)

$
'0 and *t'0, the

result for the stability of the fuzzy PID control system
will be:

K(F)
# A1#

¹(F)
$

¹(F)
*

#

*t

¹(F)
*

#

¹(F)
$

*t B ) DDgDD(1. h

Note that in (22), if we eliminate the superscript (F), we
will arrive at the su$cient BIBO stability condition for
a linear PID-controlled closed-loop system (see Appen-
dix A). Moreover, if the same gain and phase margin
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speci"cations are used, the tuning formulae (14) and (15)
result in a fuzzy PID controller that has the same gains
on its a

0
contour as a conventional PID controller. In

other words, the proposed fuzzy PID controller will
retain at least the same stability property as its conven-
tional counterpart on and inside its a

0
contour. This

result is summarized as follows.

Corollary. For a nonlinear process controlled stably by
a conventional PID controller with gain K

#
, integral time

constant ¹
*

and derivative time constant ¹
$
, if the PID

controller is replaced by the proposed fuzzy PID controller
whose control parameters w*e , w*u and w

u
are given by the

tuning formula (14) with a"a
0
3[0,1], the resulting fuzzy

PID control system will ensure at least the same (local)
stability on and within the a

0
contour.

Remark 5. The signi"cance of the above conclusion is
that, one can always replace a conventional PID control-
ler by the proposed nonlinear fuzzy PID controller with-
out losing the stability margin around the equilibrium. In
particular, if we take a

0
"0, then in steady state

e(k)"*e(k)"0, we have K(F)
#
"K

#
, the conventional

PID and the fuzzy PID control systems have exactly the
same stability.

Remark 6. From equations (14), (16) and (22), it is easy to
derive that the stability condition (22) is independent of
the error weighting factor w

e
. Therefore, we can use this

extra degree of freedom in the design to improve system
responses, as discussed in the previous section, while at
the same time maintaining the system stability.

3.2. Control eworts between fuzzy and conventional
PID controllers

In the previous section we have shown that, by choos-
ing a

0
"0, the fuzzy PID control gain is higher than that

of the conventional PID except for the equilibrium in
which both are the same. This property ensures that the
load disturbance rejection of the fuzzy PID will be at
least as good as the conventional one. Here we will
explore another novel property of the new fuzzy PID
controller: in set-point control the proposed fuzzy PID
control system will generate lower control signal pro"les
compared with the conventional PID controllers while
maintaining the higher control gain. This property will
e!ectively reduce the overshoot phenomenon in set-point
control. Note that in the PI or PID control, the initial
value of the control signal plays an important role be-
cause of the integral action. By limiting the initial control
e!ort at low level, the overall control pro"le will be kept
lower. In the remainder of the subsection we will show
that the proposed fuzzy PID control system does gener-

ate a lower initial control signal compared to the conven-
tional PID control system.

To eliminate the derivative kick in the implementation
of PID control a modi"ed derivative term is used as
follows (As stroK m & HaK gglund, 1995):

D"!K
#
¹

$

dy

dt
.

Similarly, the input *e to the fuzzy PID controller is
replaced by !*y. By transforming the series form of
conventional PID controller to the parallel form, and
subtracting u(k!1) from u(k) we can obtain

*u
PID

(k)"K
#

¹
*
#¹

$
¹

*

[e(k)!e(k!1)]#
K

#
¹

*

e(k!1)*t

!K
#
¹

$

y(k)!2y(k!1)#y(k!2)

*t
. (28)

Similarly, for the fuzzy PID controller we have

*u(F)
PID

(k)"*u
1
(k)#u

2
(k)!u

2
(k!1). (29)

From (24) we have

*u(F)
PID

(k)

"K(F)
#

(k)Cy(k!1)!y(k)#
¹(F)

$
¹(F)

i

(e(k)!e(k!1))D
#

K(F)
#

(k)

¹(F)
*

e(k)*t!¹(F)
$

K(F)
#

(k)[y(k)!y(k!1)]!K(F)
#

(k!1)[y(k!1)!y(k!2)]

*t
.

(30)

When a set-point change occurs, we have k"0,
e(0)"r, e(!1)"0 and y(0)"y(!1)"y(!2). There-
fore from (28) and (30), we have

du(0)"*u(F)
PID

(0)!*u
PID

(0)

"AK(F)
#

(0)
¹(F)

$
#*t

¹(F)
*

!K
#

¹
*
#¹

$
¹

*
Br

"AK(F)
#

(0)
¹

$
#*t

¹
*

!K
#

¹
*
#¹

$
¹

*
Br. (31)

From tuning formula (15) and choosing a
0
"0, we have

K(F)
#

(0)"
4!2a

0
4!2 max(weDe(0)D,w*e D*e(0)D)

K
#
"

10

9
K

#
(32)

and thus

du(0)"
K

#
9¹

*

(¹
$
#10*t!9¹

*
)r. (33)
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Fig. 6. Coupled tanks system. Fig. 7. Tank 2 water level.

From (13) we can obtain, when the speci"ed gain and
phase margin pair is (3, 453), *t is su$ciently small and
¸/q

1
50.023, that: du(0)(0 (noting that ¹

$
"q

2
4q

1
).

Moreover, if ¸/q
1
50.1, we will have: ¹

*
3(0.35q

1
,q
1
),

and we will arrive at the result that

du(0)+!K
#
r(0. (34)

Consequently,

*u(F)
PID

(0)(*u
PID

(0), (35)

namely, the initial control e!ort of fuzzy controller is
smaller than that of the conventional PID controller.
Moreover, if the original *e is used in derivative control
action of both controllers, the fuzzy PID controller will
still give a smaller initial control e!ort. This is because
the saturation of the controller output occurs when there
is a set-point change, which leads to the normalized
change of error being outside the universe of discourse.
This smaller initial control e!ort of fuzzy controller pre-
vents it from injecting large amounts of energy, which
may cause large overshoot, to the system. In the experi-
mental example we will further demonstrate the low
control pro"le property.

4. Experimental evaluation

To compare the fuzzy and conventional PID control-
lers, an experiment is carried out in which a nonlinear
plant is used. The plant employed in the experiment is
a coupled-tank system and the purpose of the experiment
is to control the #uid level in the second tank
(Fig. 6). In process industries, the control of #uid levels in
storage tanks is a common and important control prob-
lem. By controlling the #uid level in the tank, material
balance can be achieved so that in#ow and out#ow are
equal in the steady state.

The basic experimental system consists of two hold-up
tanks coupled by an ori"ce. The input q(t) is supplied by

the variable speed pump, which pumps water to the "rst
tank. The ori"ce between two tanks allows the water to
#ow into the second tank and then out as an out#ow. The
basic control problem is to control the water level in
the second tank H

2
(t) by varying the speed of the pump.

The measurement voltage for water level is read in and
the control signal for the pump is written out by a com-
puter through A/D and D/A interfaces. The control algo-
rithm is realized by computer programming.

Since the two tanks are coupled by an ori"ce, the plant
is a second-order system. Moreover, the out#ow rate is
determined by the square root of the #uid level in tank 2
(H

2
(t)), thus the system is essentially nonlinear. For the

design of conventional and fuzzy PID controllers using
gain and phase margin speci"cations, the plant must be
linearized, simpli"ed and modeled by a second-order
plus dead-time structure. After performing a relay feed-
back experiment, the ultimate gain and period are ob-
tained as 21.21 and 100, respectively. By conducting
another set-point changing experiment, the plant gain
can also be obtained as 0.75. Thus a simpli"ed plant
model will be

G(s)"
0.75e~8.067s

(1#61.45s)2

and the parameters of the conventional and fuzzy PID
controllers are determined based on this model and for-
mulas (13)}(15).

The experiments are carried out during a time period
from 0 to 4000 s. The sampling period is 1 s. First, the
system is settled at 10 cm. There are set-point changes
from 10 to 16 cm, 16 to 11 cm and 11 to 13 cm at time
instants of 100, 1100 and 2000, respectively. Moreover,
there is a load disturbance at time instant 2800, which is
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a 20 cm3/s #ow introduced by a pump to tank 1 to
emulate the change in in#ow. The speci"ed gain and
phase margins are 3 and 453, respectively. The size of the
ori"ce is set to 0.396 cm2. The sampling interval is 1 s and
the experiment results are shown in Fig. 7. In the "gure,
the solid and dotted lines are the water levels of tank
2 controlled by the fuzzy and conventional (Ho et al.,
1994) PID controllers, respectively.

After the water level is settled at 13 cm (time instant
2500), the parameters of fuzzy PID controller are
re-calculated by increasing s in (15) from 0.2 to 0.5. From
the experiment data, we can "nd that the closed-loop
system performance of fuzzy PID controller is evidently
better than that of conventional PID controller. The
fuzzy PID controller gives only slight overshoot to set-
point changes with almost same response speed as its
conventional counterpart. On the other hand, the con-
ventional PID controller gives large overshoots. The
magnitude of the system response to load disturbance is
relatively smaller and the convergence is faster when
using fuzzy PID controller. Experiment results con-
"rm again the advantage of the proposed fuzzy PID
controller.

5. Conclusion

In this paper, a new structure of fuzzy PID controller is
presented. The parallel combination of fuzzy PI and PD
controllers shows its simplicity in determining the con-
trol rules and controller parameters. A tuning formula
based on gain and phase margins is introduced by which
the weighting factors of a fuzzy PID controller can be
selected with respect to the second-order plus dead-time
plants. The validity of the proposed fuzzy PID controller
and gain and phase-margin-based tuning formula is con-
"rmed through theoretical analysis and experiment. Both
theoretical and experimental results show that the fuzzy
PID controller has the nonlinear properties of (1) higher
control gains when the system is away from its steady
states; and (2) lower control pro"le when set-point
changes occur. As a result, these nonlinear properties
provide the fuzzy PID control system with a superior
performance over the conventional PID control
system.

Appendix A

A.1. Derivation of BIBO stability condition of linear
PID control system

Suppose a nonlinear process N is controlled by a linear
PID controller. In the computerized implementation, the

PID controller is discretized by using a zero-order holder
where s in the transfer function of PID controller is
substituted by (1!z~1)/*t and for a linear PID control-
ler in the series form, we have

u(k)!u(k!1)

*t
"

K
#

¹
*
A1#

¹
*

*t
#

¹
$

*t
#

¹
*
¹

$
*t2 Be(k)

!

K
#

¹
*
A
¹

*
*t

#

¹
$

*t
#

2¹
*
¹

$
*t2 Be(k!1)

#

K
#
¹

$
*t2

e(k!2).

Referring to Fig. 4, we de"ne

e
1
(k)"e(k)"r(k)!y(k),

e
2
(k)"u(k),

u
1
(k)"r(k),

u
2
(k)"u(k!1),

H
1
(e

1
(k))"*u(k)"u(k)!u(k!1),

H
2
(e

2
(k))"N(e

2
(k))"y(k).

(36)

Applying the small-gain theorem, we can obtain the
following su$cient condition for the BIBO stability for
the linear PID controlled system, as

K
#A1#

¹
$

¹
*

#

*t

¹
*

#

¹
$

*t BDDH2
DD(1.
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